- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001100000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Barbalho, Hugo (2)
-
Menache, Ishai (2)
-
Cheng, Ching-An (1)
-
Dion, David (1)
-
Domingo, David (1)
-
Frujeri, Felipe (1)
-
Kannan, Sudarsun (1)
-
Li, Jingling (1)
-
Liu, Kuan (1)
-
Marshall, Luke (1)
-
Molinaro, Marco (1)
-
Moscibroda, Thomas (1)
-
Neville, Jennifer (1)
-
Pan, Abhisek (1)
-
Sinclair, Sean_R (1)
-
Swaminathan, Adith (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In virtual machine (VM) allocation systems, caching repetitive and similar VM allocation requests and associated resolution rules is crucial for reducing computational costs and meeting strict latency requirements. While modern allocation systems distribute requests among multiple allocator agents and use caching to improve performance, current schedulers often neglect the cache state and latency considerations when assigning each new request to an agent. Due to the high variance in costs of cache hits and misses and the associated processing overheads of updating the caches, simple load-balancing and cache-aware mechanisms result in high latencies. We introduce Kamino, a high-performance, latencydriven and cache-aware request scheduling system aimed at minimizing end-to-end latencies. Kamino employs a novel scheduling algorithm grounded in theory which uses partial indicators from the cache state to assign each new request to the agent with the lowest estimated latency. Evaluation of Kamino using a high-fidelity simulator on large-scale production workloads shows a 42% reduction in average request latencies. Our deployment of Kamino in the control plane of a large public cloud confirms these improvements, with a 33% decrease in cache miss rates and a 17% reduction in memory usagemore » « lessFree, publicly-accessible full text available July 7, 2026
-
Sinclair, Sean_R; Frujeri, Felipe; Cheng, Ching-An; Marshall, Luke; Barbalho, Hugo; Li, Jingling; Neville, Jennifer; Menache, Ishai; Swaminathan, Adith (, Proceedings of Machine Learning Research)Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem – allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods.more » « less
An official website of the United States government

Full Text Available